

Materials Science and Technology

Atomically thin transition metal halides grown on metal substrates

Daniel Rothhardt¹, Zuned Ahmed^{2,3}, Hao Liu^{2,3}, Regina Hoffman-Vogel¹, Hans Josef Hug^{2,3}, and Amina Kimouche¹

¹ Institut for Physics and Astronomie, University of Potsdam, 14476 Potsdam, Germany

² Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland

³ Department of Physics, University of Basel, CH-4056 Basel, Switzerland

1. Introduction

Atomically thin 2D materials are characterized by a strong covalent bonding in the layers and a weak interlayer interaction. By

limiting the symmetry, the electrical, optical and magnetic properties of the 2D materials differ from their 3D counterpart. There has been a great interest in 2D materials beyond graphene. Two dimensional compounds (MXenes, oxides, nitrides) and chalcogenides) have been reported in succession. A novel class of 2D materials, transition metal halides, have recently been synthesised [1]. These are characterised by a magnetic ground state even in the monolayer limit and thus provide a fertile platform for exploring low-dimensional magnetism and developing novel spintronic devices. Therefore an understanding of the epitaxial growth of this class of materials is advantageous. Here, using frequency-modulated scanning force microscopy in non-contact mode combined with Kelvin probe microscopy, we investigate different phases and layer thicknesses down to the one monolayer thickness. All experiments were performed in a home-built low-temperature AFM (EMPA, Dübendorf). For more details see REF [2].

2. Growth of NiBr₂ on Au(111) (f) 1 nm -35 Hz 0 20 Hz 0 14 Hz -67 Hz -200 -130 Hz -210 -160 Hz -42 -112

Fig.2: First flexural mode resonance frequency shift data recorded at constant tunnelling current. (a) $I_t = 10 \text{ pA}$, $V_{bias} = 300 \text{ mV}$ (c) $I_t = 450 \text{ pA}$, $V_{bias} = 260 \text{ mV}$ (e) 2D FFT of NiBr₂ (f) 2D FFT of buffer layer.(a)-(f): Pt coated Si cantilever, $A_{1st} = 3 \text{ nm}$, $f_{res} = 294.46 \text{ kHz}$, Q = 30000, c = 40 N/m, T = 6.3 K

co-existence of different phases I ML NiBr₂ growing on a buffer layer • ML height. 195 ± 10 pm

- Buffer layer: (Fig. 1 (b) and (c))
 - unknown stoichiometry (NiBr_{2-x})
 - Iattice constant: 1.2 nm
- Br-Mesh: (Fig. 1 (d))
 - pattern with hexagonal-like symmetry
 - quasi periodicity of 3.5 nm

2D FFT: (Fig. 1 (e)-(f))

- (e) NiBr₂
- (f) NiBr_{2-x}

Fig.3: First flexural mode resonance frequency shift data recorded at constant tunnelling current.(a) and (b): Pt coated Si cantilever, $I_t = 50$ pA, $V_{bias} = 200$ mV, $A_{1st} = 3$ nm, $f_{res} = 283.9$ kHz, c = 40 N/m Q = 30000, T = 6.3 K. The green parallelogram in (c) indicates the unit cell. Fig. 3 (b) is the inverted image of Fig. 3 (a).

Mesured lattice constants $|\vec{a_1}| = |\vec{a_2}| = 3.8 \pm 0.05$ Å • Slightly larger then the prediction from theory $|\vec{a}_{DFT}| = 3.61$ Å [2] Lattice shows triangular symmetry (compare Fig. 2 (e)) Ni atoms are seen as protrusion in (a) and as depression in (b)

5. Conclusion

- Two structures are formed: NiBr₂, NiBr_{2-x}
- 1st NiBr₂ layer grows on a buffer layer
- CPD between the buffer layer and NiBr₂ of 10 mV suggest a similar stoichiometry, i.e. NiBr_{2-x}
- Residual Br atoms forming hexagonal-like network

Fig.4: Data measured with a Pt coated Si cantilever in FM-AFM mode on the first flexural resonance. (a) topography image and (b) FM-KPFM signal (first side band detection). $\Delta f = -10$ Hz, $A_{1st} = 6 \text{ nm}, f_{ac} = 450 \text{ Hz}, V_{ac} = 250 \text{ mV} f_{res} = 283.9 \text{ kHz}, Q = 30000, c = 40 \text{ N/m}, T = 6.3 \text{ K}$

NiBr₂ shows a layer-dependent work function \rightarrow charge transfer between NiBr₂ and Au(111)

References: [1] Bikaljević, D., et al., ACS Nano 15, 14985 (2021) [2] Liu, H., et al., Beilstein Journal of Nanotechnology 13, 1120 (2022) [3] Kulish, V. V., et al., J. Mater. Chem. C. 5, 8734 (2017)